求小数的近似数教案
作为一位优秀的人民教师,就有可能用到教案,借助教案可以更好地组织教学活动。教案应该怎么写才好呢?下面是小编精心整理的求小数的近似数教案,仅供参考,大家一起来看看吧。
求小数的近似数教案1【教学目标】
1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。
2、通过学生自主探索、合作交流,培养学生的探索能力。
【教学重点】
使学生掌握求一个小数的近似数的方法。
【教学难点】
使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。
【教具】
多媒体课件
【教学过程】:
一、课前预习
1、怎样用“四舍五入”法求出一位小数的近似数?
2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?
二、展示交流
(一)创设情境,引入新知
课件出示豆豆,看看小豆豆的身高是多少呢?
今天下午我们就来研究求一个小数的近似数。
(二)求小数的近似数的方法
1、同学们还刻求整数的近似数的方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?
2、探究新知
(1)同桌讨论回忆什么是“四舍五入”法?
(2)讨论尝试
①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。
②出示例1,讨论求0。984的近似数
③保留一位小数时,末尾的“0”为什么应该写呢?
(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。
(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数
1、出示教材第74页例2
①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?
②结论:改写成用“亿”或“万”作单位的数。
2、从算理入手,理解改写方法。
①讨论:怎样改写呢?
②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。
三、检测反馈
1、教材第74页上、下的“做一做”。
2、教材第75页练习十二第一、2题。第3、4题
四、板书设计教
求一个数的近似数
四舍五入
法
保留两位小数0.984≈0.98 142800千米=14.28万千米
保留一位小数0.984≈1.0 778330000千米=7.7833亿千米
≈7.8亿千米
保留整数0.984≈1
注意:在表示近似数时,小数末尾的0不能去掉
教学反思:
现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。
求小数的近似数教案2教学内容:
义务教育课程标准实验教科书青岛版第71页《求小数的近似数》。
教学目标:
1.借助已有经验,使学生掌握求一个小数近似数的方法,能够正确地求一个小数的近似数。
2.在解决问题的过程中,培养学生自主学习的能力,初步学习用猜想、比较、归纳等数学方法学习数学知识。
3.通过独立思考,培养学生认真审题、解题的良好学习习惯。
教学过程:
一、创设情景
1.谈话:同学们,本单元前面几个信息窗我们学习了形形色色的鸟蛋和龟蛋带给我们的数学知识。本节课我们继续来学习本单元最后一个信息窗绿毛龟蛋带给我们的数学知识。
出示情境图,仔细观察画面,你知道了什么?你又能提出哪些数学问题?
学生合作交流。
2.谈话:这节课重点解决他们说的结果为什么不一样和绿毛龟蛋的宽径约是多少这两个问题。其他问题放在问题口袋里以后解决,可以吗?
[设计意图]激发学生的学习愿望和参与动机是引导学生主动学习的前提,通过清晰生动的情境图中出现的两位同学不同的测量结果让学生观察讨论,学生意见不一,于是需要寻找正确的判断方法,由此激起学生探寻新知的强烈愿望。
二、探究新知
1.学生独立思考他们说的结果为什么不一样?这一问题。
谈话:观察两位同学说的结果,你能发现什么?
让学生观察,引导学生发现:小华读出的结果是一个一位小数,小明读出的结果是一个整数。
谈话:对,求3.94的近似数,根据不同的要求,既可以保留一位小数,也可以保留整数。请同学们选择一种情况,根据我们求整数的近似数的方法,研究一下怎样求一个小数的近似数。
学生独立研究后,再在小组内交流。
谈话:哪位同学愿意说说你是怎样求3.94的近似数的?把你的方法向大家介绍一下。
谈话:你的方法很正确,还有哪位同学与他求得的近似数不同?
谈话:你的方法也很正确。因此,我们在求一个小数的近似数时,依然运用了四舍五入法,关键是看精确到哪一位。
2.学生独立思考绿毛龟蛋的宽径约是多少?这一问题
学生独立思考后,引导学生讨论什么时候小数的近似数的2,什么时候小数的近似数的2.0。
讨论得出:求一个小数的近似数时,保留小数的数位不同,精确程度也不同。
[设计意图]这一环节教学时让学生自己去观察,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生,在观察讨论过程中教谈话为学生创设自由选择的空间,让学生体会自由选择的轻松和快乐。
三、巩固应用
1.黄河的流域面积是75.14万平方千米。(保留一位小数)
2.把1.463保留整数、把1.463保留一位小数和把1.463保留两位小数这三种说法的结果是否是一样的?
3.小华的体重保留整数是45千克,他的体重可能是多少千克?
[设计意图]练习中让学生交流不同的思考方法,鼓励学生思维的创新,方法的简洁,但也照顾学生不同的认知水平,尊重学生的学习成果。
四、感悟收获
谈话:今天大家学得愉快吗?你们最 ……此处隐藏6188个字……3.0
教师强调:这题的要求是保留一位小数,所以小数末尾的0不能去掉。
教师:谁能连贯地把做这题的过程说一说。
指名让学生说一说,然后教师总结:
做这题时要想:要保留一位小数,就是省略十分位后面的尾数。百分位上满5,省略尾数后,向十分位进1,末尾的0不能去掉。
教师用投影片出示例1的第3小题:2.953保留整数,它的近似数是多少?
教师板书:2.953
教师:谁能做出这题并且说一说应该怎样做?
指名让学生做这题,并且说一说是怎样做的。
根据学生的发言,教师板书:2.9533,并且总结:做这题时要想;要保留整数,就要省略整数后面的尾数。十分位上满5,省略尾数后向个位进1,所以2.9533。
教师:观察上面三道题,是同一个小数保留两位小数,保留一位小数和保留整数。每一次求出的近似数的精确度是不同的。保留整数,表示精确到个位;那么保留一位小数,表示精确到什么位?(十分位。)保留两位小数呢?(表示精确到百分位。)
指名学生回答上述问题。条件较好的班,教师可以接着讲一讲关于精确度的问题。讲法可以如下:
教师:那么,上面的三个近似数哪一个更精确一些呢?我们现在证明一下。如果2.953表示的是测量一段绳子的长度得到的结果:2.953米。
教师用投影片(或小黑板)出示图如下:
教师:2.953保留两位小数时,是2.95米,表示精确到百分位。保留一位小数是3.0米,表示精确到十分位,也就是说绳子的准确长度不小于2.95米,也不能等于或大于3.05米。因为如果是2.94米,保留一位小数就是2.9米了;如果是3.05米或3.06米,保留一位小数就是3.1米了。再看当保留整数位3时,表示精确到整数个位,也就是说准确长度不能小于2.5米,不能等于或大于3.5米。所以前一个近似数都比后一个近似数精确程度要高一些,即2.95米的精确度高于3.0米的精确度,3.0米的精确度又高于3米的精确度。
教师用投影片或小黑板出示第106页上半页做一做中的第1题,并且加一题:4.795(保留两位小数)。指名让学生做,集体订正。
教师:我们学会了怎样求一个小数的近似数。想一想,求一个小数的近似数应该注意什么?同桌讨论一下。
指名让学生发言,在学生发言的基础上教师总结:
1.要根据题目的要求取近似值,即:保留整数,就看十分位是几,要保留一位小数,就看百分位是几,......然后按四舍五入法决定是舍还是入。
2.取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉。
三、课堂练习
1.做第106页上半页做一做的第1、2题,学生独立做,做完以后,集体订正。
2.做练习二十四的第3题。
教师先提问:精确到十分位是什么意思?(保留一位小数。)
精确到百分位是什么意思?(保留二位小数。)
然后,让学生独立做,教师巡视,个别辅导,强调要注意的两点。做完后,集体订正。
四、课堂作业
练习二十四的第1-2题。
求小数的近似数教案8设计说明
学生在之前学习过求整数的近似数,已经掌握了基本的学习经验。因此,在本节课的教学设计上注重体现以下几点:
1.创设生活情境,感受数学与实际生活的联系。
《数学课程标准》中指出:数学源于生活又服务于生活。据此,在教学时,结合教材例1创设的豆豆测身高的情境引入新课,使学生体会到小数在生活中的广泛应用。这样就把求一个小数的近似数的知识还原于生活,应用于生活,让学生感受到数学与实际生活的紧密联系。
2.注重类推,让学生经历知识迁移的过程。
求小数的近似数的方法与求整数的近似数的方法相同,学生对用“四舍五入”法求近似数有了一定的理解和掌握。在此基础上,让学生把学过的求整数的近似数的方法迁移类推到求小数的近似数上去,实现知识的良好迁移,使学生掌握迁移、类推的学习方法。
3.注重引导,让学生在探究中学习。
在教学求小数近似数的过程中,我充分放手,先引导学生在小组合作学习、讨论交流的基础上理解保留几位小数的意义,再引导学生探究如何求一个小数的近似数,最后引导学生总结归纳出求小数近似数的方法。
课前准备
教师准备 多媒体课件 卡片
教学过程
⊙复习导入
1.复习旧知。
(1)把下面各数省略“万”位后面的尾数,求出它们的近似数。(课件出示)
986534 58741 31200
50047 398010 14870
(2)下面的□里可以填哪些数字?
32□645≈32万 47□905≈47万
学生填完后,引导学生说一说是怎么想的。
2.导入新课。
师:我们学过求一个整数的近似数。在实际应用小数时,往往没有必要说出它的准确数,只要说出它的近似数就可以了。那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题)
设计意图:借助复习求整数的近似数引入新的学习内容,使学生能更好地理解求一个小数的近似数的方法,由旧知迁移到新知,既激发了学生的求知欲,又为新知的探究做好铺垫。
⊙探究新知
1.课件出示教材例1情境图。
从图中你获得了哪些数学信息?
(豆豆的身高是0.984 m)
2.探究求近似数的方法。
(1)豆豆的身高是0.984 m。说明已经精确到了毫米,平常不需要说得这么精确,那我们一般怎么描述豆豆的身高呢?(出示课堂活动卡,组织学生讨论交流,然后指名汇报。学生的回答可能有两种情况:①豆豆的身高约是0.98 m;②豆豆的身高约是1 m)
(2)你是怎样得出豆豆身高的近似数的?
生1:我用“四舍五入”法把0.984保留两位小数。因为在生活中,表示身高的米数通常是两位小数,也就是精确到厘米。把0.984保留两位小数就要看千分位上的数,千分位上的数不满5,舍去,求得近似数是0.98。
生2:我用“四舍五入”法把0.984保留整数。保留整数就要看十分位上的数,十分位上的数是9,满5,向前一位进1,求得近似数是1。
教师小结:求一个小数的近似数与求一个整数的近似数相同,也是根据“四舍五入”法保留一定的位数。
教师板书: 0.984≈0.98
↑
小于5,舍去
(3)如果要保留一位小数,应该怎么做呢?(组织学生小组内讨论、交流,然后汇报:0.984保留一位小数就要看百分位上的数,百分位上的数是8,满5,向十分位进1。十分位上本来是9,进1后满10,向个位进1,求得近似数是1.0)
教师板书:0.984≈1.0
↑
大于5,向前一位进1